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Nonperturbative Time-Independent Green Function
of Matrix Schr'odinger Equation. General
Formalism and Quasiclassical Representation

Alexander |. Pegarkov?3
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A Green function of time-independent multichannel Sclimger equation is considered

in matrix representation beyond a perturbation theory. Nonperturbative Green functions
are obtained through the regular in zero and at infinity solutions of the multichannel
Schiodinger equation for different cases of symmetry of the full Hamiltonian. The
spectral expansions for the nonperturbative Green functions are obtained in simple form
through multichannel wave functions. The developed approach is applied to obtain
simple analytic equations for the Green functions and transition matrix elements for
compound multipotential system within quasiclassical approximation. The limits of
strong and weak interchannel interactions are studied.
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1. INTRODUCTION

The Green functions (GF) are applied often in physics because they make
it possible to sum over all the virtual intermediate states of a quantum system in
an analytic form without finding wave functions of the intermediate states partic-
ipating in a quantum interaction (Economou, 1979). To find the GF one needs to
obtain only two linearly independent solutions of the Sctinger equation (SE),
from which we can construct the GF in simple analytic form. Sometimes only
the one solution may be enough to write out the GF (Ignat’ev and Polikanov,
1984).

If a quantum particle moves in a field of two or more than two potentials, one
needs to consider the multichannel SE and GF. For each of the perturbed channels
(potentials) the quantum particle has a set of unperturbed states. In a physics
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circumstance there are interactions of the channels with each other, which modify
the unperturbed states and induce quantum transitions of the particle between the
channels.

Ignat’ev and Polikanov (1984) applied a perturbative theory to obtain a mul-
tipotential (or multichannel) GF for the case where the interchannel couplings
are weak. In the case of strong couplings, where the interchannel interaction is
comparable with energy gap between the unperturbed quantum states, the pertur-
bation theory is inapplicable and one has to study the total Hamiltonian beyond
a perturbative approach. Aymaral. (1996) and Pegarkov (2000) showed that in
theoretical applications the GF of the nonperturbative Hamiltonian is needed in
order to obtain a multichannel propagator and transition probability.

In the present paper the multichannel GF approach is developed for the non-
perturbative regime of quantum interactions. A quasiclassical approximation is
applied to construct the two- and three-channel GF and to obtain the transition
probabilities in a simple analytic form.

2. FORMALISM OF NONPERTURBATIVE MULTICHANNEL
GREEN FUNCTION

2.1. Multichannel Schrédinger Equation Beyond
Perturbative Approximation

The SE in the case of few interacting channels may be written as
{IE —H(R)}®(R) =0,
F=18ll, 0=10-8jll, i,j=1,2,...,k (1)

where the Hamiltoniakl(R) is presented in the following matrix form:

H(R) = H(R) + V(R), @)
h2 2
HO(R) = |H2(R)s; | = - siaR T U(R),
U(R) = diaglU1(R), Ua(R), ..., Uk(R)}, ®)

U(R) is the diagonal matrix containing the potentials of unperturbed channels
Ui (R) on its principal diagonal; (R) is the potential of théth channel,

V(R) = IV (R)II, (4)

is the nondiagonal matrix of the nonperturbative quantum couplings,

‘(/@;(R)V(R)@m(R)dR)w ~ |Em — Eml,
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k is the number of all the quantum channels participating in the nonperturbative
interaction.
A solution®(R) of matrix SE (1) is presented here in form okax k) matrix

®(R) = |14 (Rl )

which contains all the partial solution vectors of the multichannel equation (1).
If the channel coupling vanishes, the nondiagonal matrix Hamiltonian equa-
tion (2) converges to the unperturbed diagonal Hamiltor&(R) equation (3)

V('éem H(R) — H(R). (6)

The nondiagonal matrix solution of the multichannel equation (1) should converge
to the diagonal solution of the SE with unperturbed Hamiltonian equation (3):

lim <I>(R) — ®Y(R),

V(R)—
2°(R) = | 4°(RSj ||
{IE® — H(R)}®(R) = (7)

Equation (1) may be rewritten in the form of

(E - H(R)¢ij(R) = Zv.m(meJ(R) ®)

The wave functionp;j (R) fits to the inhomogeneous SE for thé channel. It is
easy to obtain from Egs. (5)—(8), that each of the functisp&R), j =1, 2,...,k

is a perturbed partial wave in thiéh channel. Therefore, one may say, that the
functional row pi1(R), ¢i2(R), ..., ¢ik(R)] contains all the partial solutions for
theith channel and is the partial vector solution of the matrix SE (1). Then, the
construction of the full multichannel solutions (MC®) R) of matrix SE (1) is as
follows:

(i) all the channel solutions of Eq. (1) are placed into MCS equation (5) by
rows,
(i) the functiongy; (R) is a partial solution for theth channel,
(iii) the partial waveg;j (R) is excited by another channglinteracted with
theith one.

For the case of pair interaction of the channels at fixed pint
Vi (R) = Vij (Xij)8jm,

¢ij (R) is the wave transmitted from thigh channel to théth one after a passage
through channel interaction poii; .
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One has to emphasize that only the MCS equation (5) may be used to con-
struct the GF of the multichannel SE (1). It is simple to see below that the use
of fundamental solutions in vector representation gives incorrect equation for the
multichannel GF and its spectral expansion.

2.2. Green Function of Multichannel Schiodinger Equation

In consequence of Egs. (6), (7) the limit of the nonperturbative multichannel
GFis

lim G(R, R;E)— G%R, R;E),
V(R)—0

GR, R;E) = |[GXR, R; E)sij |, 9)
where the diagonal matrix equation (9) fits the following inhomogeneous equation
with the diagonal unperturbed Hamiltonian equation (3):

(IE — HYR)}G(R, R; E) = I§(R— R))
and each of its components does the unperturbed one-channel SE as
{E - HY(R)}GX(R, R;E) = §(R— R).

The time-independent GF of the multichannel nonperturbative Hamiltonian
equation (2) fulfils the following second order differential inhomogeneous matrix
equation:

{IE = H(R)}G(R, R’ E) = I§(R — R) (10)

and is a nondiagonal matrix function of two variabRsand R’, which depends
on energyE as on a parameter:

G(R, R;E) = |G'(R, R E)Il. (11)
The GF defined by Egs. (10), (11) is continuoufat R':
G(R+¢, RRE)=G(R—¢, R E), € —> 0, (12)
and has a first kind discontinuity there:
diRG(R, R:E) o ;—RG(R, R:E) = i—’;L (13)

Let me search a nonperturbative solution of the full inhomogeneous differ-
ential equation (10) in the form like the perturbative consideration of Ignat’'ev and
Polikanov (1984),

G(R, R;E) = (14)

ou [®2ARA(R), R>R,
h |®,(RB(R), R<R,
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where®,(R) and®,(R) are two linearly independent solutions of nonperturbative
SE (1), fitted the standard boundary conditions in zero and at infik{ty) and
B(R) are the matrices to be found. The multichannel funct®n&R) and®,(R)
have the nondiagonal matrix form of Eg. (5).

Substituting Eq. (14) into Eq. (13) one gets

PLA + BB =1. (15)
Premultiplying Eq. (15) by®5]~* on the left and allowing for Eq. (12) yield
A =[®, — &,&;'®,] ", (16)
if, of course,
de{®), — ®,P;'®,] # 0.
Like Eqg. (16) one obtains, that
B = —[®, — ,&,'®] *,
de{®) — ®,8, @] # 0. (17)
Now let me show, that if both matrices of potentiblilR) andV (R) are either
symmetric
V(R)=V'(R), U(R)=U'(R) (18)
or Hermitian (the superscript T means transpose, the superseripie does
Hermitian conjugationA—1 is the inverse matrix td. AA~1 = A~1A = |):
V(R) = VT (R), U(R)=U*(R), (19)
then Egs. (16), (17) can be expressed through the regular #CSd ..

Substituted Egs. (2), (3) into Eq. (1), premultiplied it by functidh or &/,
and used the fact, that

PP 1= 1® =1,

one gets the equation
&nm&ﬁmﬂ—%dmwﬁmﬂ=%ﬁwm+wm—ay (20)

In order to find the functionsql”lz]’ the following property of the first derivative
of a matrix function should be useg (s an integer, see Lancaster, 1969)
A(t)

WAip(t),

d_. )
GADIP = —A"P()

then,
[®:3(R)] = —2 3R, (RIB R (21)
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Substituting Eq. (21) into Eq. (20) yields the matrix nonperturbative Riccati
equation in the form like the perturbative one obtained earlier by Ignat'ev and
Polikanov (1984):

(AR + IR = 25 1U(R) + V(R) - EI] (22)
where
f12(R) = &7 (R @1 5(R).

Under the condition of Eq. (18) the functiof{gz(R) fit the Riccati equation
(22) too. Therefore, if the equation

f1,2(Ro) = f1 (o)
is true in a fixed poinRy, then it is true for anyR
f1,2(R) = f] o(R).

Making some transformations with Egs. (16), (17) and substituting Eq. (21)
to them permit to deduce finally the following equation for the nonperturbative GF
(11) of the symmetric multichannel Sadihger Hamiltonian

H(R) = H'(R), (23)

2u [@ARW B[ (R), R>R,
h* | 2(RIWT]'®3(R), R<R,
whereW is an invertibleR-independent matrix
W = ®](R)[®2(R)] — [®1(R)] ®2(R) = const# 0. (25)

The multichannel GF equation (24) obeys to the following symmetry
properties

G(R, R;E)=G'(R, R E),
G™(R, R;E) = G*(R, R;E).

If the GF (24) is a real one (of, in general, complex enekyy: E*), then
G*(R, R;E) = G(R, R E).

Starting from Eq. (22), assuming both potential matrices to be Hermitian,
Eqg. (19) and the energy to be real, one can deduce the following equations for the
nonperturbative GF of the Hermitian Soldifiger Hamiltonian

H(R) = H"(R), (26)
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G(R R:E ®,(RW o] (R), R>R, 7
( )= & (RW]1®3(R), R<R, @n
W = &/ (R)[®2(R)]' — [®{ (R)]' ®2(R) = consts 0,
G(R,R;E) = G*(R, R;E). (28)
If the Hamiltonian equation (2) has no symmetry
H(R H'(R) E #E* 29
R#1ym B7 (29)

the nonperturbative GF equation (11) may be written only in its general form as

G(R,R:E) = { JR[®2AR) ~ B (RIBIR)TAR)] ) R> R,
®1(R)[® H(R)®,H(R)®1(R) — ®,(R)]” ' R<R.
(30)

without the simplifications made due to Egs. (23), (26). The GF equations (24),
(25), (27), (28), obtained here nonperturbatively, correspond with those applied by
Wolken (1972), Aymaet al. (1996), Han and Yarkony (1996) to various problems
in laser spectroscopy and chemical physics.

Let me consider now the multichannel Green function equation (24).

Using the determination of inverse matrix and properties of invertible
matrices provided by Lancaster (1969) gives the multichannel Green function
components as

GI(R,R;E;R>R) = > 1 08 (R1ph (R) A,

h2 IWI
GI(R RiE;R<R)= hz |W| 3 et 05 (RIBFn(R) A
IW| = detw = ZZW Ot mr ®21) A, (31)
=1 o=
Ami = (- 1)*“*‘2( 1)@ 1‘[ Zw (0L, 02,),
r=1e=1
P ={¢1, 82,83, ..., &b (32)
where B is a permutatior{¢s, 2, ¢3, ..., ¢} of k — 1 following numbers 1, 2,
SL1I=1,1+1,..., kwritten in any sequenceé(PR) is number of transposi-

tions which bring the(¢y, &2, 3, .. ., &k} permutation to the normally graduated
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one{l,2,3,...,1 —1,1+1,...,k} (the B permutation takes all thek( 1)!
possible permutations),

W(u,v) =uv —vu.

2.3. Spectral Expansion of Nonperturbative Multichannel Green Function

A spectral expansion of the nonperturbative GF can be obtained via eigen-
functions of multichannel Hamiltonian equation (2). So, the eigenfuncfiggdR)
of the symmetric matrix Hamiltonian equation (23)

H(R)‘I’m(R) = Em‘I’m(R)
satisfy the following conditions of orthonormalization and completeness

[ RERET(R) = 160,
D UR(RTL(R) =18(R- R). (33)

Substituting Eqg. (33) into Eq. (10) and its simple transformations yield the follow-
ing spectral expansion for the multichannel Green function equation (24)

’ Un(R)¥/(R)
G(R,R;E) = —
( ) Xm: E—-En+iO
The eigenfunctions of the Hermitian Hamiltonian equation (26) fit the
equations

/ AR (RYT, (R) = 1,
> UR(RTL(R) =18(R- R).

and the spectral expansion for its Green function equation (27) is

’ Tn(R¥(R)
G(R, R;E) = —
( ) Xm: E—-En+i0
The spectral expansion for the multichannel Green function of the Hamiltonian
without symmetry equations (29), (30) cannot be obtained because the set of its
eigenfunctions does not form a basis.

2.4. Exact Expression of Nonperturbative Green Function
Through the One Regular Multichannel Solution

The GF of the symmetric multichannel Hamiltonian, Eq. (24) can be simply
expressed through only the regular in zero M@ R). From Egs. (24), (25)
one gets
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R
$,(R) = @1(R) [ [®I(X)®2(X)] ‘WX, (34)

la>

where|a> is the vector limit, that
2 (R 22(R)] o = 0.

Substituting Eq. (34) into Eq. (24) yields the expression of the nonperturba-
tive GF equation (24) through only the regular in zero multichannel solution in the
form of

G(R, R E) = i—‘j%(R)J(R»@I(R’),

R
J(R) = / [2](X)®2(X)] "'WdX, R. =maxR, R}.
la>
The GF of the Hermitian multichannel Hamiltonian equation (27) may be
written through Wronskian matrix equation (28) as

2
G(R R E) = T ®:(RI(R )2} (R),
where

R
J(R) = f [®5(X)®2(X)] "W dX.
la>

So, the nonperturbative multichannel GF may be expressed in simple ana-
lytic forms of Egs. (24), (27), or (30). The form to write out the GF depends on
symmetry of the full multichannel Hamiltonian equation (2) and can be various
for different kinds of quantum interchannel interactions formed the nondiagonal
coupling matrix equation (4).

The general expressions for GF, obtained in this section, are important for
physics applications because, as it has been demonstrated by Wolken (1972),
Aymar et al. (1996), Han and Yarkony (1996), Pegarkov (2000), they permit to
calculate analytically the quantum transition probabilities without perturbative re-
strictions upon the interchannel interaction. Within a quasiclassical approximation
one can obtain simple analytic equations for the nonperturbative multichannel so-
lutions and Green’s function.

3. QUASICLASSICAL APPROXIMATION FOR MULTICHANNEL
SCHRODINGER EQUATION

3.1. Matrix Representation of Multichannel Wave Solutions

Within the quasiclassical approximation the matrix Schinger equation may
be integrated in a nonperturbative matrix form where the multichannel solutions
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of the coupled equations (#(R) are obtained in the following analytic form for
all the points ofR-variable excepted few singular points:

®(R)=E"(R,Ra" +E (R, Rja, (39)

whereE*(Ry, Ry) are the diagonal matrices of quasiclassical was&sare the
nondiagonaR-independent matrices of wave amplitudes:

E*(Ry, Ro) = || A" 4(R)Fi& (Re, Ro)omi, (36)
at* = a5, ml=12,..k (37)

In a classical permitted poirR the wave in thenth channeFZ(R;, R;) has
the form of

FE(Ry, Ro) = exp{#iL m(Ry, Ro)}, (38)
and in a classical forbidden one
Fi(Ry, Re) = exp{s|Lm(Ry, Ro)l}, (39)

where the sigs can be equal with 1 6+ 1 in dependence on the boundary condition
for themth channel,hi(R) is the classical kinetic momentum in thigh channel,
Lm(Ry, Ry) is the reduced action along the channel potettjg(R)

Am(R) = h™'[2u(E — Un(R)IY?,  Lm(Ry, R) = /RRZM(R)dR (40)

The quasiclassical representation for the multichannel solution equations
(85)—(40) is true if the condition

dar'(R)
dR
is fulfilled for all the channel potentials.

<1 (41)

3.2. Quasiclassical Propagation of Multichannel Solutions
Through Singular Points

The multichannel solution equation (35) propagates through the isolated turn-
ing point as follows:

if the ¢ig (R) component in a classical forbiddéregion has the following view
_1/2 G
91 (R) = 1 (R expl—|Li (R, R, (42)
then its form in a classical permittéetregion is
¢f (R) = A (R) "2 cos(Li(R,, R)| — 7/4); (43)
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if the wave component in the classical permitted region is
i (R) = % (R)™Y*{a expli[ILi (R, R)| + 7/4]}

+a; exp{—i[ILi(R, R)| + 7 /4]}}, (44)
then in the classical forbidden region it is
¢ (R) = [} (R)|"*(a +aj) expl|Li (R, R)I). (45)

Equations (42)—(45) are a simple multichannel representation of the well-known
one-channel formalism of Briian and Fainan (1965).

The propagation through a branch point (the point of crossing of diabatic
potentials and that of quasicrossing of adiabatic ones) changes the wave ampli-
tudes equation (37). Here we consider the crossing picture, which the following
conditions are true for

Li> 1, Joij| > 1, (46)
Li =Li(R,R), aj = Li(R, Xij) — Lj(Rj, X;j). (47)

In a point R between two neighbouring branch poiXg _1, Xij, Xij_1 <
R < Xjj (Fig. 1) the multichannel solution, Eq. (35) may be written as a sum of
incoming and outcoming matrix waves as

®<(R) = E+(Xij , R)a™ + E™(Xij, R)a=. (48)

!

|

I

|

| .

) r
R T

2 Nig Ra Xy XpyRiRY RJ
Fig. 1. Intersecting potentials in general multichannel case in dependence on v&iaIR)) is the
left (right) turning point in unperturbed potentid) (R), X;; is the branch point (the point of crossing
of theU; (R) andUj (R) potentials Xj; = Xj;).
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For theR-point between the next branch poirXg, Xij;+1, Xij < R < Xjj41 the
multichannel solution may be written as

P’ (R) = E+(Xij , Rjat” + E™(Xij, R)a—. (49)

The amplitudes™ anda®™ in Egs. (48), (49) are connected by the k matrix
Nij :
at” = Nij ats
. (50)
a” = Ny a™=
TheN;; matrix has the following structure:
its componentNy = 8 forallm, | #1, j,

its componentd;;, Nij, Nji, Nj; form the 2x 2 matrixR,

{Nii Nij }
N = .
Nji Njj (51)

The R-matrix connects the wave amplitudes of the two interaction channels
and j on the left and right sides from the nonadiabatic pofjt and is ex-
pressed in different analytic forms within eitherdébatic basisor an adia-
batic basisfor the total energ)E lying either above or under the crossing point
energyVU; (X;;) (caseE < U;(Xj) is so-calledunderbarrier nonadiabatic tran-
sition, E > U;(Xjj) is so-calledabovebarrier nonadiabatic transitignNikitin
and Umanskii (1984), Eu (1984), and Nakamura (1987) studied in detail the
2 x 2 matrix of nonadiabatic transitionsk in the problems of atomic
collisions.

For the abovebarrier case tRenatrix may be expressed as (the branch point
lies into the classical permitted region, the diabatic and adiabatic curves are marked
as those in Fig. 2)

—in the diabatic basis
v {\/ Pij expli v ] -/1-P; eXPﬂ¢ij]} (52)
V1—PRjexpl-igij] /Pjexpl-ivil
—in the adiabatic basis
- {\/1— Pjexpligij] /Pjexplivi]
—/Pjexpl=ivij] /1— Pjexpl-igi]
The nonadiabatic paramete®s, vij, ¢i; describe the interaction of the inter-

secting channel potential (R) andU; (R). They depend on velocity of effective
particle in theX;; point, on the form of the potential curves and their reciprocal

} , (53)
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u(mj

3
Xi}

Fig. 2. Branches of diabatic (solid lines) and adiabatic
(dashed lines) potential:tﬁj (R) andUiaj (R) form diabatic

and adiabatic bases. The subscripts of diabatic and adiabatic
curves are the samesk¥ < Xjj.

position, on the interchannel coupling streng¥) (R)|. The functional form of

the nonadiabatic parameters is determined by a model of interchannel nonadia-
batic transitions. The choice of the model is subjected to the curves picture to be
appropriate for the transition process. The model admitted gives only the analytic
equations for the nonadiabatic parameters but the general form of the multichan-
nel transition matrixN equations (51)—(53), connecting the quasiclassical wave
amplitudes equation (50), is the same for all the models.

One can see from Egs. (48)—(53) that the multichannel approach, developed
here, may be applied with the same success either for the diabatic or adiabatic
basis. A basis from the two ones is only a representation (a picture) to describe
a two-curve crossing problem. So, one may use the diabatic basis, say about the
crossing diabatic potentialsil’_( R) and do the calculations with the diabatic22
matrix X9 equation (52). On the other side one may use the adiabatic basis, say
about thejuasicrossing adiabatic potentials(R) and calculate with the adiabatic
matrix 82 equation (53). This choice of the basis brings no formal changes to the
construction of the nonperturbative multichannel wave solutions equation (35).

Therefore, the nonperturbative multichannel approach elaborated in this paper
is an universal one to solve the multichannel ®cdmger equation independently
on the model of wave amplitude connection and type of basis used and may be
applied to studynultipotential problem# quantum mechanics.
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3.3. Nonperturbative Propagation of Regular Solutions
of Multichannel Schrodinger Equation

Using the rules formulated above permits to construct the regular in zero
and regular at infinity nonperturbative solutions of the multichanneldtthgér
equation (1). In th&R-point lying between two branch poinkg; andXj 11, Xij <
R < Xjj+1 both solutions are

®1(R) = E*(X;j, R)Aal + E™(Xjj, R)A*a, (54)

(I>2(R) = E+(Xij, R)BaE + E_(Xij , R)B*ag, (55)

whereA, B, a, af are the followingR-independent matrices:

A = Nij F"(Xij_1, XijINjj_1- - - N1gF"(X12, X13)N12, (56)

B= F+(Xij+ly Xij )Nﬁ+1 c N;:nsz-F(Xnnfly Xnnfz)N:n,ly (57)
FE(X1, X2) = | FE (X1, X2)dmi|, [F¥]T = F*,
+ + + 1T + (58)
af g = || RImdmi|, [a RI" = & g-

Here we consider the general case, whete# E and, thereforel}, # L. In
opposite case, Eq. (58) are supplimented by the folloRs]{ = FT, [af_t’R]+ =
af g

The channel left-side amplitudes are (both for open and closedannels)

in the classical permitted region
(@ =5 expl | (R X1 - 5 |}
in the classical forbidden region
(@)n = ' expl—ILm(Rn, Xa2I}
The channel right-side amplitudes are

i) for the case of the closaud-channel:

in the classical permitted region
b . ’ T
(aﬁs)m = 7m eXp{il I:Lm(Rmy Xnn-1) + Zj|}y
in the classical forbidden region

(@) = 2 expl—ILn(Ry Xon )l
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ii) for the case of the opem-channel:
. T
(@g)m = by, eXp{il [Lm(Rm, Xnn-1) + Z“’

wherean,, bm, bﬁ; are the constants.

The matrix amplitudes of regular solutions, equations (54), (55) are connected
with each other by means @fmatrix as

Aa =TI (ij)A%a, (59)
Bah = T3 (ij)B*ax. (60)

Including Egs. (54), (55) to the matrix Wronskian, Egs. (25), (28) deduces
its independence on thg-variable. In the quasiclassical approximation equations
(25), (28) are formally equal with each other and have the form of

W = 2i{a; Sa}, — a S*ag},

S=A'B
= NF ™ (X12, X13)Nig- - Ny oF~ (Xnn-2, Xnn-1)Njy s (61)

The matricesA andB, Egs. (56), (57) are the quasiclassical multichannel
propagators evolving the regular channel waves along the multichannel passage
from their origins to theR point: A propagates the multichannel wave from zero
andB propagates it from infinity. Both propagators allow for only the interchannel
interactions existed between the wave origin and Ehpoint. So, theA-wave
propagator involves the interactions lying between zeroRmhd no ones lying
between infinity andR; the B-wave propagator involves the interactions lying
between infinity andRk and no ones lying between zero dRdFor a quantum state
in such multicurve potential the regular in zero solution, Eq. (54) must be equal to
the regular at infinity one, Eq. (55) in d&-point as well as their first derivatives
must be equal to each other in the same point too.

4. TWO- AND THREE-CHANNEL NONPERTURBATIVE GREEN
FUNCTIONS IN QUASICLASSICAL APPROXIMATION

Within the method developed above one obtains the very simple analytic
equations for the multichannel Green functions in the cases of two and three
intersecting potentials.

The component§' (R, R’; E; R < R)) of the multichannel Green functions,
Egs. (24) and (27) may be received fr@H (R, R’; E; R > R))in accordance with
symmetry of the functions as
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in order to getth&' (R, R’; E; R < R)-component of Eq. (24) it needs to replace
the variablefk andR’ with each otherin th&!' (R, R’; E; R > R’)-component

G/(R R;E;R< R)=G/(R R;E;R > R)|ror; (62)
for the components of Eq. (27) the rule is
G/(R, R;E;R< R)=[G'(R, R;E;R > R)|rur]". (63)
TheGl'#I(R, R E; R > R)-componentisreceived fromt&i# (R, R; E; R >
R’) one as follows:
G#*I(R, R;E;R> R)=G"#(R, R;E;R > R)|ror. (64)

Therefore, one needs only to write out the diagonal compor@iyR, R; E;

R > R) and nondiagonal ones lik81>1 (R, R’; E; R > R)). The other compo-
nents may be obtained from them by means of simple replace of indexes and/or
variables as given by Eqgs. (62)—(64).

4.1. Two-Channel Nonperturbative Green Functions

A two-channel Green function is written in the form of either Eq. (24) or
Eq. (27), that depends on full enerdy and types of the participated channel
potentials.

4.1.1. Potentials “Attractivel- Attractive”

The channel potentials are shown in Fig. 3(a). In this case the Wronskian is
equal to

IW| = detW = Prarp + (1 — P)riora, (65)

where designations », 12,21 are given in Appendix.
In the classical permitted region on the left side from branch pXintthe
Green function components are

Ry 2 < R < Xy,
11(22) . , 2L 1/2
GH*AR, RTE;R > R) = — - [h12(R)A12(R)]
“hAw|
X COS(Ll(Z)( Rizn R) — 7/4)Q2w)(R), (66)

GR R;E;R>R) = h2|W —Da(RA(R) Y2 /P(L—P)
xsin(Li—L2 —o12+ ¥ +¢) cosL1(Ry, R) —/4)

x coslL2(Ry, R) — m/4). (67)
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NN

E

utr)

utr)

Fig. 3. System of two diabatic potentials marked as
1, 2. The dashed curves show adiabatic potentials
designated a&f A(R). (a) The “attractivet attrac-
tive” system, (b) the “attractive- repulsive” system,

(c) the “repulsivet repulsive” system.

In the classical permitted region on the right side from the branch point
one has

X12< R< R,

2 B
GU)R R;E;R> R) = —Wl\jw[xl(z)(R)/\l(z)(R’)] 12

x €0s(L12)(Ru@), R) — L1 + 7/4)F2w)(R),
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GR R:E:R> R) = %[M(R)Az(R’)]”W PL—P)s
x cosL1(Ry, R) — Ly + 7/4)

x cos(L2(Ry, R) — Lo + 7/4),
where

s=sin@ — o012 — ),
F1,2(R) = Pri2cosl2,1(Re1, R) F ¢ — 7/4)
+ (1 — P)rag,12c0sl2,1(Re,1, R) £ 012 F ¢ — 7/4),
Q1,2(R) = Prizcosl21(Re1, R) — Loi: ¢ +7/4)
+ (1= P)riz21€08(2,1(Re,1, R) £ 012 — L12 F ¢ + 7/4),
S1.2(R) = Pdicoslz1(Re1, R) F ¢ — /4)
+(1— P)d2cosl2,1(Re,1, R) =012 F ¢ — 7/4)

and other designations are presented in Appendix.

4.1.2. Potentials “Attractivet Repulsive”
See Fig. 3(b); here
W[ = Prid; + (1 — P)dorz1. (68)

For the classical permitted region on the left side from the branch painthe
component of nonperturbative Green function matrix are

R1,2< R < X]_z,

2
h2|w|

x [PdycosCi(Ry, R) — L1 — ¢ + 7/4)
+ (1 = P)dzrasexpli[L1(Ry, R) + /4111,

G'(R R;E;R>R) = [a(RA(R)] "2 cosL1(Ry, R) — 7/4)

G®¥R,R;E;R>R) = —%[M(R),\Z(R')]l/%/la(l — P)dydbi €'t

x cosL1(Ry, R) — w/4) cosl2(Ry, R) — m/4),
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G#(R,R;E;R > R) = ————[x2(R)*2(R)] Y2 cos(L2(Ry, R) — 7 /4)

hz|W|
x [Pridiexpli[L2(R, R) + 7 /4]} + (1 — P)d,
x cosl2(Re, R) + 012 — ¢ — L1 + 7/4)],

and for the classical permitted region on the right side from the branch point
X2

X< R< R/,

G(R,R:E:R > R) = [ (RA(R)] 2

h2|W
x cos(l_l(Rl, R) — L1 + 7/4)S(R),

G'(R, R;E;R > R) = 5 ——[11(R)2(R)]"/2/P(1 - P)scosL(Ry, R)

h2|W
— L1+ m/4) expi[L2(Re, R) +7/4]}.

an
3w
X Fl(R’) expli[L2(Ry, R) + 7 /4]}.

G*R,R;E;R>R) = [Az(R)Az(R’)] 1

4.1.3. Potentials “Repulsive- Repulsive”

See Fig. 3(c). The Wronskian matrix determinant is equal to unity
W| =1

For the classical permitted region on the left side from the branch painthe
Green function matrix is

Rio< R< Xp3, m=1,2
G™(R,R;E;R> R) = —i_lJzL[km(R)km(R’)]‘l/2 costm(Rm, R) —7/4)
x expli[Lm(Rm, R) + 7/4]},
G®¥R,R;E'R> R) =0,

and for the classical permitted region on the right side from the branch point
X2
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X12 < R,
GH(R, R} E; R > R) = ~ 25 D Rpa(RI
x expli[L1(Ry, R) 4+ 7/41}S(R),
GH(R, R3EiR > R) = 5 a(Ria(R)2/PA— P)s
x expli[L1(Ry, R) + w/4]} expli[L2(Ry, R) + 7 /4]}.
G*(R R;E;R>R) = —i—’;“[)\z(R)xz(R/)]—l/z

x expi[L2(Re, R) + 7/4]}S{(R).

4.2. Three-Channel Nonperturbative Green’s Functions of Potentials
“Attractive 4 Attractive 4 Attractive”

The terms system is shown in Fig. 4. By the same way as above one obtains

the three-channel Green matrix components as

G(R,R;E) = |G™(R, R;E)|l, m,| =1, 2, 3 for the classical permitted region

lying between the branch poink; ;3 and X,z are

X13< R < Ros,

21
h?|W/|

+7/4) {RocosL1(Ry, R) + ¥13 — 7/4) + Ra

x cosl1(Ry, R) — 013 + ¢13 — 7 /4)},

G'(R,R;E;R>R) = [11(R)A1(R)] Y2 cosL1(Ry, R) — Ly

2
G*R R;E;R>R)= W‘\jw[xl(R)xz(R’)rl/Z\/ P13(1 — P1g)Pys(1— Pyy)

x 515 cos(L1(Ry, R) — Ly + 7/4)
x cos(La(Ry, R) — /4),

2
G¥R,R;E;R> R) = W’\jw[xlm)xs(re/)rl/z\/ Pra(1— Prg)

x $1F2(R)cosL1(Ry, R) — L1 + 7/4),
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Uy
E

Fig. 4.

G*(R,R;E;R>R) =

G*R,R;E;R>R) =

G¥®R,R;E;R>R) =

where

]
I l

B ——— e —_“— —

)
|
] | L i
Re X3 R Xy 2

~|

-
R

R e

|
|
|
|
1 Rz

System of three attractive diabatic potentials marked as 1, 2, 3. The
dushed curves show adiabatic potentials.

h2|W| ———[22(R)A2(R)] Y2 cosla(Re, R) — 7/

1617

4)

X { Pog[ Pistitz + (1 — Pia)taitig] cos(L2(Re, R)

— L2 — Y23+ 7/4) + (1 — Pa3)[Pratitsz
+ (1 — Pra)tastio] cos(L2(Rz, R)

— o023 — L3+ ¢o3+ w/4)},

h2|W ———[22(R)A3(R)] ™2y Pas(1 — Pzs)
X SQfl(R/) cos2(Re, R)—m/4),

h2|W| o [Aa(R)As(R)] Y2 F1(R) F(R),

S = sin(oz — ¢13+ V13),
S = Sin(ooz — Lo + Lz — ¢o3 — 23),
F1(R) = Pty cos(L3(Rs, R) — ¥r13 — 7/4)

+ (1 — Py3)tascosLa(Rs, R) + 013 — ¢13 — 7/4),

F2(R) = Pastacos3(Rs, R) — Lz + Y23+ 7/4)

+ (1 — Po3)tascos(Lz(Rs, R) — L2 + 023 — ¢23 + /4),

(69)



1618 Pegarkov

R1 = (1 — Pia){Paztotiz + 1(1 — Pa3)tiotas),
R2 = P13{Pastots 4 (1 — Pas)tastan),
W| = —t1Ro — ta1Ra,

and other magnitudes are written in Appendix.

4.3. Quasiclassical Nonperturbative Green Functions in Limits
of Weak and Strong Nonadiabatic Couplings

In this subsection the quasiclassical multichannel Green functions are
calculated in the weak interchannel coupling and strong interchannel coupling
limits analytically. An aim here is to obtain the limit expansions for the functions
and to show, that the weak coupling expansion of the multichannel Green func-
tion corresponds with the perturbative expansion of full nonadiabatic
resolvent.

4.3.1. Two Interacting Channels

The components of two-channel Green function can be written in a general-
ized form as follows:

a; + aap
G"R,R:E)=A—=, m,l =1,2, 70
( ) by + ab, (70)
G™ (R, R;E) = Ai, 71
( ) b1 + aby (71)

wherea is
1-P

= — 72
o 5 (72)

A, A a;, a, are the functions oR and R, but by, b, are independent on the
R-variable.

The Green functions, Eqgs. (70), (71) may be expanded over-flarameter,
Eq. (72)

a< 1l (73)

as theTaylor-Maclaurinsseries:
A { azbl — a1b2
41

G™(R, R;E)= —1a
( ) =012t

R(bs, o) } (74)

Gm;éI(R, R: E) = ﬁ\/&{l_ %R(bz,a)}, (75)
b]_ b1
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whereR(b, «) is the following series:
2b)n-1
R(, @) = Z = (76)

The principal nonperturbative dependence of the two-channel Green func-
tions, Egs. (70), (71) concentrates into R, )-term, Eq. (76). The other mag-
nitudesA, A, aj, ap, by, by depend on the interchannel interaction much weaker
through only the phasep, ¢.

For the opposite case, where

a>1, (77)

the Green functions, Egs. (70), (71) may be expanded overth@arameter and
Egs. (74), (75) transform to

G™™(R, R E) A{ a0 + MR@LM%}, (79)
2
mzl . A 1 b, -1
G™ (R RiE) = s Varil1- 2Ry, a Y. (79)
2 2

Therefore, in the case Eq. (73) the two-channel Green functions poles are due
to theb;-term (see Eqs. (74), (75)), while in the case Eq. (77) the poles are due to
another ternb, (see Eqgs. (78), (79)). Thus, the poles in the weak interaction limit
(so-calleddiabatic limit)

a1, ¢—>¢o, ¥ — Yo (80)
are quite defferent from those in the strong interaction limit (so-caltiidbatic
limit)

o> 1; ¢ g ¢001 W e I//oc (81)

Within the Landau—-Zener model of the nonadiabatic interchannel transi-
tions it can be calculated directly in an analytic form, that in the limit of weak
interchannel interaction, Eq. (80) the two-channel Green function components
IGI (R, R’; E)| are expressed through the diabatic one-channel Green functions
GO (R, R’; E) of unperturbed potentialdm(R). So, theG?2 andG!? components
have the form of

RR<Xp ekl §kK1, (82)
GZ (R, R;E) = G)(R, R E) + (G)(R < Ry)Var(R1)GY(Ry, Rp)

X Vlg(Rz)Gg(Rz > R’)) (83)

R, Ry’
Gimo(R, R’ E) = (G2(R < Ry)Via(R))G3(Ry, R)) - (84)

The diagram representation for Egs. (83), (84) is given in Fig. 5(a) and (c).
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Fig. 5. Diagram representation of two-channel nonperturbative Green function. The diagonal
componentG*¥(R, R’; E) is pictured as broad solid line (a), the unperturbed Green function
GJ(R, R;E) is drawn as the narrow one (b), the nondiagonal compo@&fi(R, R’; E) is
presented as diagram (c).

4.3.2. Three Interacting Channels

The same results can be obtained for the three-channel Green function
|G (R, R;E)|l,m, | =1, 2, 3, where the weak interaction limit, Egs. (80), (82)

thre
|s putted firstly for theV,3 coupling and then for both couplind4s, Vos:

X13 < R, R < X23,
13K 1l, Sx~1
Gised R R E; R > R) = Gioy(R, R E; R > R) + (Gagy(R > Ry)Vay(Ry)

two

GY(R1, Ro)Vi3(R)G33 (R, > R/))R Ry (89)

GinedR, RTE;R > R) = (GJ(R > Ri)Via(R1)Gio(R1 < R)) (86)
GPAR R;E;R< R) =G (R R;E;R < R)+ (G (R < Ry)Vai(Ry)
x GY(R1 < Ro)Vi3(Ro)Ging(Re < R))g mv (87)
813, 623 K 1,

GE.{R R;E;R> R)=G}R R;E;R> R)+(G3(R < Ry)Vsx(Ry)
G3(Ry, Ro)V23(R)G(Re > R .
+(G3(R > R)Va1(R))GY(Ry, Ro)Vi3(Ry)

G3(R: < R)) (88)

Ri, Ry’
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Gimed R RS E; R > R) = (G(R > Ry)Viz(R)G3(R1 < R, (89)
Gived R RS E; R < R) = (G(R < Ry)Vaa(R))G3(R1 > R))g - (90)

In Egs. (83)—(90) thg )r symbol stands for the integration over tie
variable, estimated by means of stationary phase mettigdR) is the inter-
action of theU;(R) andU,(R) unperturbed diabatic potentialg;s(R) is that of
the U(R) andU3(R) unperturbed diabatic potentials. The diabatic one-channel
Green functionQP(R, R’; E) in the quasiclassical approximation are presented in
Appendix.

In the strong coupling limit, Eg. (81) the multichannel Green functions are
expressed through the one-channel Green functions of the reconstructed adiabatic
potentialsU2(R) (see Figs. 3 and 4) in the forms like Egs. (83)—(90).

5. NONPERTURBATIVE MATRIX ELEMENTS OF QUANTUM
TRANSITIONS WITHIN QUASICLASSICAL APPROXIMATION

The time-independent multichannel Green functions obtained above may
be applied to calculate the quantum transition probabilities beyond perturbation
approximation.

The nonperturbative transition matrix element may be expressed via the
T-transition operator as

Tri = (xYIT(E)XP),

wherexi‘?f are the perturbation-free wave functions of the chanigJg,) stands
for the nonperturbative transition operator

T(E)=V +VG(E)V
and theG(E)-operator fits the followingxactoperator equation
G(E) = Go+ VG(E)V (91)

with perturbation-free resolver@y. The coordinate representation of resolvent
G(E) (91) is the nonperturbative matrix Green function.

A transition matrix element with the nonperturbative Green function can be
written through the components of the Green matrix (11) as

k
Mii = Y (x}(RIVi(RIG™(R, R’ E)Vimi(R)Ix(R)). (92)
I, m=1
Within the quasiclassical approximation one can obtain simple analytic equa-
tions for the nonperturbative transition matrix element (92). As an example of them
only the case of attractive channel is considered here, where two channels interact
with each other nonperturbatively and the variables lie in the classical permitted
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region on the left side from the branch pokXt,, R > R (see Subsection 4.1.1.,
Egs. (66), (67)).
Using a stationary phase method to estimate the integrals in Eq. (92) gives

A% A h2
My = ;S\” [{v/P@ = P)sinlLy — Lz — 012+ ¥ + ¢)
X sz(sz) COS()’fz - qu) — (PI'QSin(O'fl +Li+v — Qfl)
+ (1= P)rassin(r1+ o012+ Lo — ¢ — G1))Cra(X11)}
x Cyi(Xy) cospyi — du) + {VP(L— P)sin(L1 — Lo — 012+ ¥ + ¢)
x Ct1(Xt1) cos@1 — Gr1) — (Prisinesz + Lo — ¥ — Gs2)
+ (1 — P)rizsin(rz — 012+ L1+ ¢ — G2))Cr2(X12)}
x Cyi(Xa) c0S@ai — Gai)], (93)
where
- 172
Ci(R) =i (R)[hZAi(R)mu- J
o (dU(R)  dU(R)
q”(x)_< dR dR )RX

- .
Gij = o sign@;; ),
A, Aj are the amplitudes of initial and final channel wave functions.
In the limit of the very weak interaction

T
= —,; = 0,
¢ 2 14
Eq. (93) takes the form
v ATA N Tsinga + Ly — Gr1) cosfu — Gu)Cra(X12)Cui (Xu)
i w coslL;
. sinfef2 + L2 — G2) coSE2 — G2 )Cra(X+2)Coi(X2i)
cosL, '

which corresponds to the well-known perturbative approximation over perturbation
[V12].
In the limit of the very strong interaction

P=0, 1-P=1,



Nonperturbative Time-Independent Green Function 1623

p=9¢% y=y°
Eqg. (93) transforms to
_ATA h?[sin(os1 + L§ — 1) oSy — G1i)Cra(X1)Cai (X1i)
w cosL$

N sin(o2 + L3 — G2) c0spa — G2i)Cr2(X12)Cai (X2i)
cosL3 ’

MS, =

(94)
whereL$ andL$ are the reconstructed quasiclassical actions over the adiabatic
potentials,

LI =012+ La—¥5

Lg = —o12+ L1+ 5.

Equation (94) corresponds to the perturbative approximation |d4gir* which
is known as arstrong-field perturbative approximation

6. CONCLUSION

The time-independent nonperurbative approach presented in this paper has
permited to obtain the multichannel wave functions and Green functions in the an-
alytic form, which are useful to consider the principal picture of stationary quatum
transitions and to receive simple equations for their cross sections beyond pertur-
bation theory. The presented multichannel method permits to get the equations in
the form to be appropriate for a simple physics analysis without routine numerical
computations. The quasiclassical functions obtained above may be used, if the
conditions, Eqs. (41), (46), are fulfilled.

APPENDIX

Let me introduce the following designations for the terms of two-channel
functions used above:

ry = cosly + v),

ro1 = cosli— o012+ ¢),

rz =coslz — ),
ri2 = coslz + o12 — ¢),
dy =€V,

dp = i (9—012) ,



1624 Pegarkov

and for the three-channel functions:

t; = cos1 + ¥13),

t12 = COSP23 — 013 — L2 + ¢13 — ¢h23),
to = cos(Lz + ¥23),

ti3 = cos(L3 + 013 — ¢13 — ¥23),
ts = coslLs — V13 — V23),

tog = cos(L3 + 023 — ¢23),

t31 = C0Sp13 — L1 — ¢13),

t32 = COSP23 — L2 + Y13 — $23),

The diabatic one-channel Green functi®f\(R, R’; E) within the quasiclas-
sical approximation is

for an attractive potential

GY(R, R E) = ~ 25 n(RAn(RO] 2

5 cosLm(Rm, R<) — 77/4) costm(Rm, Rs) — L + 7/4)
cosLm

for a repulsive potential
, 2u N
Gr(R R E) = =7 [hn(R)m(R) 2

x COSLm(Rm, R<) — /4) exfi [Lm(Rm, R>) + 7 /4]},
where

R. = maXR, R}, Rc =min{R, R}.
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